SS16A2

Universal 16 Amp Self Excited Automatic Voltage Regulator
With Droop and Power Factor Correction Inputs
Separate Power inputs for Auxiliary Windings
Used With Older Cat* SR4 Generators

Operators Manual

* For reference purpose only - this is not a Cat Regulator
1. SPECIFICATION

<table>
<thead>
<tr>
<th>Sensing Input</th>
<th>Voltage 170 to 510 VAC Single Phase 2 wires, Voltage is DIP Switch selectable</th>
<th>Over Excitation Protection</th>
<th>Max DCV 95% 20Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input</td>
<td>Frequency 50/60 Hz DIP Switch selectable</td>
<td>Power Dissipation</td>
<td>Max. 3 Watt</td>
</tr>
<tr>
<td>Voltage</td>
<td>Over Excitation Protection</td>
<td>Max DCV 95% 20Sec</td>
<td></td>
</tr>
<tr>
<td>Shunt or Auxiliary Winding</td>
<td>Max DCV 95% 20Sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>Voltage 60 ~ 300 VAC Single Phase 2 wires</td>
<td>Under Frequency Protection</td>
<td>50/60 Hz DIP SW selectable</td>
</tr>
<tr>
<td>Current Continuous 16A</td>
<td>Under Frequency Protection</td>
<td>Max DCV 95% 20Sec</td>
<td></td>
</tr>
<tr>
<td>Intermittent 20A for 10 sec</td>
<td>Soft Start Ramp Time</td>
<td>2 sec</td>
<td></td>
</tr>
<tr>
<td>Resistance Min 4Ω</td>
<td>Soft Start Ramp Time</td>
<td>2 sec</td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>< ± 0.5% (with 4% engine governing)</td>
<td>Thermal Drift</td>
<td></td>
</tr>
<tr>
<td>Regulation</td>
<td>Voltage Build-up</td>
<td>Residual voltage at AVR terminal > 5 VAC</td>
<td></td>
</tr>
<tr>
<td>Remote Voltage Adjustment</td>
<td>5% with 2K Ohms 1 Watt trimmer</td>
<td>Dimensions</td>
<td>41mm H * 156mm W* 106mm D</td>
</tr>
<tr>
<td>Load Current “CT” Compensation</td>
<td>1A or 5A Max. 7% @ PF 0.5 DIP Switch Selectable</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Analogue Voltage Input A1 & A2</td>
<td>±3VD Max. 10%</td>
<td>Weight</td>
<td></td>
</tr>
</tbody>
</table>

The SS16A2 AVR is an update of the SS15A2 AVR. It is similar to the original SS15A2 in power and voltage sensing capabilities but with new enhanced paralleling functions; the user can now select the CT inputs either 1 & 5 Amp or use new A1 & A2 analogue signal inputs terminals for use with PLC paralleling controls. It has new over-voltage excitation safety circuits to prevent damage caused by the accidental detachment of the sensing wires or irregularities on the generator’s excitation circuits.

Dimension

For dimension and mounting, refer to Figure 1. The protection fuse capacity is 16A / 250V slow blow type.

Connection terminal specification

6.35mm (1/4 inch) ("Fast-On" terminals.) with 4mm crimping terminal

ATTENTION!!

Use an average-reading type voltmeter for voltage readings. Do not use Meggers and high-potential test equipment that could damage the AVR.

Secure all wiring connection. Do not install AVR at location with too much vibration to avoid loose connections. Do not touch the heat sink while operating.

Figure 1 Outline Drawing Unit : mm
2. Terminal Description

2.1 P1 - P2: Power Input Terminals from 60 to 300Vac 50/60Hz -16A rated

2.2 F+ F?: Maximum Output current 16A

2.3 VS1 -VS2 : Voltage sensing input terminals, Volts selected using DIP SW1 for 220V or 400V

2.4 S1 - S2: Load Current Compensation (droop), CT secondary current input selected by using DIP SW2 1A or 5A (if droop not used leave terminals open).

2.5 VR1 - VR2 : External Voltage trim connection, 2K Ohms 1-watt trimmer for 5% voltage adjustment. Keep terminals shorted when not in use.

2.6 A1 -A2: Analogue Voltage Input terminals used for Power Factor correction from a external PLC. The PLC controls provides a DC voltage signal to adjust the generator voltage. Max. Adjustment range is ±5VDC. Keep terminals open when not used, adjust TRIM to change bias volts.

2.7 DIP Switch 1 to 3

SW1 : OFF sensing voltage from VS1 to VS2 (170 to 260VAC)
ON sensing voltage from VS1 to VS2 (340 to 510VAC)

SW2 : OFF use 1A CT
ON use 5A CT

SW3 : OFF 60Hz
ON 50Hz

SW4 : OFF Over excitation protection enabled
ON Over excitation protection disabled

2.8 LED Indicator

U/F : Under Frequency Indicator
O/E : Over Excitation Indicator

3. Adjustment and Setting

3.1 TRIM works together with a bias voltage applied to terminals A1 and A2. This signal is supplies by an external Power Factor Paralleling PLC. Use the TRIM potentiometer to adjust the DC voltage input that controls the level of the generator’s output voltage. When set counter-clockwise the control level is zero, and if moved clockwise the maximum control range is 10%. The signal connected to A1 and A2 can be unipolar (0, +) or bipolar (+, -). Check with the manufacture of the Paralleling control PLC.

3.2 DROOP: Select switch S2 pending on the secondary current of the CT that you are using. Voltage droop works when the CT and the AVR senses that the output of the generator voltage and current waveforms are out of synch and the AVR droops the output voltage of the generator to correct it.

3.3 STAB: If the generator output voltage oscillate, adjusting the STAB potentiometer will stabilize the output voltage, over adjustment will result in high voltage variation when load is applied. Use an analog type multimeter when making this adjustment. Connect the meter to terminals F+ and F- and slowly adjust STAB potentiometer to the point when the pointer stops moving.
3.4 VOLT: Move to set the generator output voltage. Set DIP Switch 1 to the generator working voltage.

- Set SW1 to OFF (220V) for use from 170 to 260V
- Set SW1 is ON (400V) for use from 340 to 510V

When using and external VR set it to the central position and adjust the AVR VOLT trim to the rated voltage.

Note: If the external VR is not used, short terminal VR1 and VR2.

3.5 U/F: Under Frequency protection setting.

- At 60Hz U/F factory set at 55Hz
- At 50Hz U/F factory set at 45Hz

To adjust the U/F setting, select the correct system frequency, start engine and adjust engine speed to the required U/F frequency (for example 55Hz or 45Hz), slow adjust U/F potentiometer until the U/F red LED turn ON, returning the engine speed to normal turn the LED off.

Function of the Under Frequency trim pot:

3.5.1 During start up or shutdown, the engine speed changes going over or under its rated RPM/(Hz).

This AVR has an Under Frequency circuit to protect the AVR and exciter; you do not need to disconnect the AVR when idling the engine.

3.5.2 If load is higher than the generator’s capacity, the Under Frequency activates, reducing the generator’s voltage preventing generator overload.

3.6 Over Excitation Protection: Switch 4

3.6.1 This AVR has over Excitation Protection preventing the generator from working under unusually high excitation. Excitation Protection includes generator overload, accident removal of sensing wires, and incorrect voltage setting. When problems occur, the AVR will gradually shutdown the excitation voltage to the minimum residual voltage. If the O/E LED turn ON and stays ON, you need to reset the AVR by shutting the engine for 10 seconds. When working the generator in parallel this protection is not required.

4. Notice of Use

4.1 Installation Notice: (refer to Figure 2 and 4)

- Only, a trained professional can install, calibrate and inspections this AVR
- Install this AVR inside the generator enclosure away from moisture, corrosion and from any easy to reach area.

4.2 Generator Operation Notice:

- During operation, the temperature on the surface of the AVR can reach higher the 60 C/140°F
- “DANGER” When the AVR is working never touch or ground the heat sink on the AVR. The AVR heat sink is an electrically live terminal.

⚠️ A warning sticker is in place on top of the heat sink.
5. Field Flashing

When operating this AVR for the first time, the polarity of the residual magnetism may be reversed or too weak to achieve the necessary build-up on the regulator. If reversing the field connections does not induce build-up, and the residual voltage is less than 5Vac, shut down the Prime-mover and proceed with the following steps:

5.1 Stop the generator and disconnect the field wires (F+ and F-), apply a DC Voltage using a batteries positive terminal to F+ and the negative terminal to F-, using a current-limiting resistor of 3~5 ohms 20 watt.

5.2 Allow approximately 3 seconds before removing the battery.

5.3 Disconnect the AVR AC power input terminals and restart the generator, re-measure the residual voltage. If this voltage is greater than 5VAC, reconnect voltage regulator, and voltage build-up should be successful. If measured less than 5VAC, repeat steps 5.1 and 5.2.

5.4 If repeating steps 5.1 and 5.2 does not result in generator voltage build-up, and residual is greater than 5VAC, replace with a new voltage regulator.

Warning: Over field, flashing could damage the AVR or generator exciter.

Warning:

Set DIP Switch to 220 volt Sensing

This is the most common connection

Figure 2 220V Connection
6. TROUBLE SHOOTING

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>CAUSE</th>
<th>CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage does not build up</td>
<td>Residual voltage below 5VAC</td>
<td>Reference from 5.1 and 5.2</td>
</tr>
<tr>
<td></td>
<td>F+, F− polarity reversed</td>
<td>F+ and F− reverse the connection</td>
</tr>
<tr>
<td></td>
<td>F+, F−, P1, P2, VS1, VS2 not connected</td>
<td>Reference from Figure 2 and 3 connection</td>
</tr>
<tr>
<td></td>
<td>Burnt fuse</td>
<td>Change fuse 16A 250V</td>
</tr>
<tr>
<td></td>
<td>Ext. Switch(Breaker) not turned on</td>
<td>Switch on (ON)</td>
</tr>
<tr>
<td></td>
<td>Engine RPM under speed</td>
<td>Increase engine speed / frequency above 25HZ</td>
</tr>
</tbody>
</table>

Figure 4 Paralleling Connection
Poor adjustment is made
Read start procedure carefully and adjust again

U/F protection activated
Increase generator speed

U/F activated / Incorrect voltage selection
Read user’s manual to select correct voltage

Output voltage
Low

Set DIP switch to sensing voltage

380/480V Connection

Output voltage
High

Incorrect voltage selection
Read user’s manual to select correct voltage

Output voltage
Unstable

Field voltage requirement lower the range of regulator
Inquire our distributor to solve

P.S. Use the factory supplied fuse only
Figure 5 Current Compensation paralleling connection

NOTE!!
(1) connect AVR as shown in Figure 5 when paralleling three generators or more.
(2) The polarity of the CT is shown in Figure 5
Using a SS16A2 McPherson AVR on any SR4 Caterpillar Generator.

Set DIP Switch to 220 volt Sensing.